1. Juvela S, Korja M. Intracranial aneurysm parameters for predicting a future subarachnoid hemorrhage: a long-term follow-up study.
Neurosurgery 2017;81:432-440.
2. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis.
Lancet Neurol 2011;10:626-636.
3. Howard BM, Hu R, Barrow JW, Barrow DL. Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage.
Neurosurg Focus 2019;47:E20.
4. Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis.
J Neurointerv Surg 2023;15:262-271.
5. Hanley M, Zenzen WJ, Brown MD, Gaughen JR, Evans AJ. Comparing the accuracy of digital subtraction angiography, CT angiography and MR angiography at estimating the volume of cerebral aneurysms.
Interv Neuroradiol 2008;14:173-177.
6. Sohn B, Park KY, Choi J, Koo JH, Han K, Joo B, et al. Deep learning-based software improves clinicians’ detection sensitivity of aneurysms on brain TOF-MRA.
AJNR Am J Neuroradiol 2021;42:1769-1775.
7. Mine B, Pezzullo M, Roque G, David P, Metens T, Lubicz B. Detection and characterization of unruptured intracranial aneurysms: comparison of 3T MRA and DSA.
J Neuroradiol 2015;42:162-168.
8. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, et al. Deep learning for MR angiography: automated detection of cerebral aneurysms.
Radiology 2019;290:87-194.
9. Nomura Y, Masutani Y, Miki S, Nemoto M, Hanaoka S, Yoshikawa T, et al. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment.
J Biomed Graph Comput 2014;4:12-21.
10. Yang X, Blezek DJ, Cheng LT, Ryan WJ, Kallmes DF, Erickson BJ. Computer-aided detection of intracranial aneurysms in MR angiography.
J Digit Imaging 2011;24:86-95.
11. Merritt WC, Berns HF, Ducruet AF, Becker TA. Definitions of intracranial aneurysm size and morphology: a call for standardization.
Surg Neurol Int 2021;12:506.
12. Sichtermann T, Faron A, Sijben R, Teichert N, Freiherr J, Wiesmann M. Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA.
AJNR Am J Neuroradiol 2019;40:25-32.
13. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage 2006;31:1116-1128.
15. Krishna K, Murty MN. Genetic K-means algorithm.
IEEE Trans Syst Man Cybern B Cybern 1999;29:433-439.
16. Zagoruyko S, Komodakis N. Wide residual networks.
ArXiv 2016;1605.07146.
17. Thada V, Jaglan V. Comparison of Jaccard, Dice, cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm. IJIET 2013;2:202-205.
18. Di Noto T, Marie G, Tourbier S, Alemán-Gómez Y, Esteban O, Saliou G, et al. Towards automated brain aneurysm detection in TOF-MRA: open data, weak labels, and anatomical knowledge.
Neuroinformatics 2023;21:21-34.
19. Terasaki Y, Yokota H, Tashiro K, Maejima T, Takeuchi T, Kurosawa R, et al. Multidimensional deep learning reduces false-positives in the automated detection of cerebral aneurysms on time-of-flight magnetic resonance angiography: a multi-center study.
Front Neurol 2022;12:742126.
20. Miki S, Hayashi N, Masutani Y, Nomura Y, Yoshikawa T, Hanaoka S, et al. Computer-assisted detection of cerebral aneurysms in MR angiography in a routine image-reading environment: effects on diagnosis by radiologists.
AJNR Am J Neuroradiol 2016;37:1038-1043.
21. Štepán-Buksakowska IL, Accurso JM, Diehn FE, Huston J, Kaufmann TJ, Luetmer PH, et al. Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting.
AJNR Am J Neuroradiol 2014;35:1897-1902.
22. Hirai T, Korogi Y, Arimura H, Katsuragawa S, Kitajima M, Yamura M, et al. Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists’ detection performance.
Radiology 2005;237:605-610.
23. Kakeda S, Korogi Y, Arimura H, Hirai T, Katsuragawa S, Aoki T, et al. Diagnostic accuracy and reading time to detect intracranial aneurysms on MR angiography using a computer-aided diagnosis system.
AJR Am J Roentgenol 2008;190:459-465.