J Korean Neurol Assoc > Volume 13(4); 1995 > Article
Journal of the Korean Neurological Association 1995;13(4): 773-787.
뇌허혈 재관류로 인한 뇌조직 아민 변동과 nitric oxide 및 ?산소유리기와의 관련성
문준식, 정희선, 김동구, 김경환, 이병철
연세대학교 신경과. 약리학교실, 한림대학교 신경과
Relationship of the Changes in Biogenic Amines to Nitric Oxide ?and Oxygen Free Radicals During Cerebral Ischemia/Reperfusion
Joon Shik Moon, M.D., Hee-Sun Jung, M.S., Dong Goo kim, M.D., Ph.D., Kyung-Hwan Kim, M.D., Ph.D., Byung-Chul Lee, M.D.
Department of Neurology, Pharmacology, Yonsei University College of Medicine, Dept of Neurology, Hallym University College of Medicine
Abstract
Recently oxygen free radicals and nitric oxide (NO) are known to play an important role in neuronal reperfusion injury. This study was aimed to investigate the role of oxygen f ree radicals and NO during cerebral ischemia/reperfusion, using dimethylthiourea (DMTU) and NG-monomethyl-L-arginine (NMMA), an oxygen f ree radical scavenger and a competitive NOS inhibitor respectively. In the in vivo experiment, the ischemia/reperfusion-induced changes of cerebral biogenic amines were examined in Mongolian gerbil (Meriones unguiculatus) pre-treated with NMMA and/or DMTU. To induce cerebral ischemia/reperfusion, bilateral common carotid arteries were clamped for 10 minutes and then released for 15 minutes. The biogenic amines were measured by using HPLC-ECD(High Performance Liquid Chromatography-Electrochemical detection). To confirm the results from the in vivo experiments, the effect of NMMA and/or DMTU on [3H]dopamine release from striatal slices exposed to hypoxia was investigated. The results are as follows; 1) Ischemia/reperfusion increased the ratio of DOPAC/dopamine and HVA/dopamine as well as the concentrations of DOPAC and HVA, which were evident only in corpus striatum. 2) NMMA attenuated the ischemia/reperfusion-induced increase in the ratio of DOPAC/dopamine in corpus striatum. However, the change of DOPAC or HVA was minimal. 3) DMTU attenuated the ischemia/reperfusion-induced increase of DOPAC and HVA, and the ratio ofDOPAC / dopa- mine and HVA/dopamine in corpus striatum. 4) Simultaneous pre-treatment with NMMA and DMTU attenuated the ischemia/reperfusion-induced increase of DOPAC and HVA, and the ratio Of DOPAC/dopamine and HVA/dopamine in corpus striatum. The extent of attenuation was greater than the single treatment group with NMMA or DMTU. 5) Exposure to hypoxia markedly increased the release of [3H]dopamine in the striatal slices. 6) The administration of either NMMA or DMTU attenuated the increase of [3H]dopamine release induced by hypoxia in the striatal slices. 7) The administration of both NMMA or DMTU markedly attenuated the increase of [3H]dopamine release induced by hypoxia to the extent of the control in the striatal slices. These results suggest that oxygen free radicals play an important role in cerebral ischemia/reperfusion injury, for which NO seems to be responsible. Key Words : Ischemia, Reperfusion, Biogenic amine, Dopamine, DMTU, NMMA


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
(ZIP 03163) #1111, Daeil Bldg, 12, Insadong-gil, Jongno-gu, Seoul, Korea
Tel: +82-2-737-6530    Fax: +82-2-737-6531    E-mail: jkna@neuro.or.kr                

Copyright © 2024 by Korean Neurological Association.

Developed in M2PI

Close layer